
Game of life

Behavior Driven
Development
Projects

GitHub repo

GOF.gif

Based on Wikipedia: Conway's Game of Life: Rules

The universe of the Game of Life is an infinite two-dimensional orthogonal grid of square cells, each
of which is in one of two possible states, alive or dead. Every cell interacts with its eight neighbors,
which are the cells that are horizontally, vertically, or diagonally adjacent. At each step in time, the
following transitions occur:

Any live cell with fewer than 2 live neighbors dies

Any live cell with 2 or 3 live neighbors lives on

Any live cell with more than 3 live neighbors dies

Any dead cell with exactly 3 live neighbors becomes a live cell

The first generation is created randomly or with a predefined pattern.

Game of life

Rules of life

1. Under-Population

2. Next Generation

3. Overcrowding

4. Reproduction

https://github.com/Nouuu/GameOfLife-BDD
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/gof.gif
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Rules

By applying the above rules simultaneously to every cell in the seed—births and deaths occur
simultaneously, and the discrete moment at which this happens is sometimes called a tick. The
rules continue to be applied repeatedly to create further generations.

You can run few commands to start/build this app :

npm run start height=30 width=60 : Run compiled app in dist folder, height and width args
are optionals.
npm run build : Compile the app and generate dist folder
npm run build-dev : Compile the app and generate dist folder then run it (build + start)
npm run dev : Directly run the TS source project
npm run test : Run cucumber tests. This generate two reports :

One in coverage folder which show the test coverage
One in cucumber_report.html at the root of the project that show how cucumber
tests results

npm run lint : Run Eslint on source code

The two main classes in this App is probably Board and Cell

Board class contain a 2D Cell array. Each Cell contains two properties :

Cell coordinates
If Cell is alive

The main method compute the neighbors coordinates from it own coordinates :

How to run

Classes

Cell

function getNeighborsCoordinates(arrayDimensions: ArrayDimensions): Coordinate[] {
 const coordinates: Coordinate[] = [];
 if (this.position.x > 0 && this.position.y > 0) {
 coordinates.push({
 x: this.position.x - 1,
 y: this.position.y - 1,
 });

 }
 if (
 this.position.y < arrayDimensions.height - 1 &&
 this.position.x < arrayDimensions.width - 1
) {
 coordinates.push({
 x: this.position.x + 1,
 y: this.position.y + 1,
 });
 }
 if (this.position.x > 0) {
 coordinates.push({
 x: this.position.x - 1,
 y: this.position.y,
 });
 if (this.position.y < arrayDimensions.height - 1) {
 coordinates.push({
 x: this.position.x - 1,
 y: this.position.y + 1,
 });
 }
 }
 if (this.position.y > 0) {
 coordinates.push({
 x: this.position.x,
 y: this.position.y - 1,
 });
 if (this.position.x < arrayDimensions.width - 1) {
 coordinates.push({
 x: this.position.x + 1,
 y: this.position.y - 1,
 });
 }
 }
 if (this.position.y < arrayDimensions.height - 1) {
 coordinates.push({
 x: this.position.x,
 y: this.position.y + 1,
 });

This class contains one of the most important function : nextStep() which compute the next state of
our Board life :

 }
 if (this.position.x < arrayDimensions.width - 1) {
 coordinates.push({
 x: this.position.x + 1,
 y: this.position.y,
 });
 }
 return coordinates;
}

Board

function nextStep() {
 const nextBoard: CellArray = this.cells.map((line) => line.slice());

 for (let y = 0; y < this.dimensions.height; y++) {
 for (let x = 0; x < this.dimensions.width; x++) {
 let aliveNeighbours = 0;
 const neighbours = this.cells[y][x]
 .getNeighboursCoordinates(this.dimensions);

 neighbours.forEach((neighbour) => {
 if (this.isAlive(neighbour.x, neighbour.y)) {
 aliveNeighbours++;
 }
 });
 if ((this.isAlive(x, y) && aliveNeighbours === 2)
 || aliveNeighbours === 3) {
 nextBoard[y][x] = new Cell({y, x}, true);
 } else {
 nextBoard[y][x] = new Cell({y, x}, false);
 }
 }
 }
 this.cells = nextBoard;

When we run the cucumber tests, it generates two reports

The first one is a code coverage on cucumber's tests. This file is viewable on
coverage/index.html and look like this :

image-20220208192354230.png

image-20220208192400658.png

The other report is the result of the ran cucumber's tests :

image-20220208192621443.png

image-20220208192633476.png

}

Tests & Coverage

Coverage Report

Cucumber report

https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220208192354230.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220208192400658.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220208192621443.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220208192633476.png

