
GitHub repo

Release Version Release Date Contributors Status Platform

This application is G4C Matrix encryption program developed in C.

Feature Description

Encode file Encode a file with a given G4C Matrix

Decode file Encode a file with a given G4C Matrix

We will use a G4C encoding matrix (matrix of 4 lines, each containing the value of one byte
expressed with 8 bits) which we will load from a text file in this format:

G4C=[10001111 11000111 10100100 10010010]

We will process the file we want to encode byte per byte by making a matrix product with our
encoding matrix:

Our matrix: G4C=[10001111 11000111 10100100 10010010]
Our byte: 1010 0101

Codecc

It's CODEC, but in C“

Description

Features

How it works: the theory

Encoding

https://github.com/Nouuu/CODECC/
https://wiki.nospy.fr/books/security-projects/page/codec

First, as we have a 4-line encoding matrix, we separate our byte in two 4-bit parts: 1010 and 0101 .
Then, we make a matrix product: in the program, it is actually a XOR between the byte and the
matrix.

Byte / Matrix 1000 1111
1100 0111
1010 0100
1001 0010

1010 :arrow_right: 0010 1011

0101 :arrow_right: 0101 0101

Result: 10100101 is coded as 00101011 01010101
As we see, one input byte generates an output of two encoded bytes: this means that our encoded
output file will be twice bigger than the input source file.

Since coding a byte leads to getting two encoded byte, the consequence is that we will need to
process the file we want to decode 2 byte per 2 byte in order to get one decoded byte.

The first step is to find the identity matrix in our G4C matrix columns:

1234 5678 :arrow_right: 5234

1000 1111
1100 0111
1010 0100
1001 0010

:arrow_right: 1000
0100
0010
0001

Once we've identified the identity columns, we save their positions: here, it's (5-2-3-4).
Back to our previously encoded byte that generated these two bytes: 00101011 01010101 . For each
of these two encoded bytes, we will select the bits located at the 5th, 2nd, 3rd and 4th position,
and then concatenate them to get back to a 8-bits decoded byte.

1234 5678 :arrow_right: 5234

0010 1011 :arrow_right: 1010

0101 0101 :arrow_right: 0101

And voilà!
We've just decoded these two bytes and recovered our original one: 1010 0101

The program GUI is pretty simple to understand:

Decoding

Usage

image_01.png

First of all, you need to load your G4C matrix text file.
:warning: Your key must be in this format: G4C=[10001111 11000111 10100100 10010010] , otherwise it
won't work.

image_04.png

Then, choose the file you want to encode or decode:

image_02.png

Press the Encode button (no kidding! :upside_down_face:).
The program interface will freeze during the process but don't panic, it's working.

image_08.png

The encoded file is saved in the same folder than the original one, and the letter e (for "encoded")
is added at the end of the file extension.

image_11.png

Press the Decode button (haha again, no kidding! :upside_down_face:).
The program interface will freeze during the process but don't panic, it's working.

image_05.png

The decoded file is saved in the same folder than the original one, and the letter d (for "decoded")
is added at the end of the file extension.

image_10.png

Load the G4C Matrix

Load the file

Start the encoding process

Start the decoding process

Warning ⚠️⚠️⚠️ !!!

https://wiki2.nospy.fr/uploads/images/gallery/2022-05/ddDimage-01.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-04.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/Siaimage-02.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/vPoimage-08.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-11.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/qsOimage-05.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-10.png

In both cases, you will need to have MinGW installed with GTK+3.20 at least.
I didn't figured out how to compile it in static in all-in-one executable file yet...

Here's the command to execute inside msys2 to be able to compile this project:

Then, you need to link the msys2/mingw64/bin folder to your system environment variable PATH .

During the build, if some libraries are not found, go to the folder msys2/mingw64/include and copy
them outside of the version folder:
Exemple: copy gtk and gdk folder inside msys2/mingw64/include/gtk-3-0/ directly inside
msys2/mingw64/include/

First of all, we need to load our key otherwise the program won't start the encoding / decoding
process.
The key must be in valid format and will be stored in a local array char codecKey[4][8] .

The function int readKey(const char *path) in codecFunction.c opens the key text file and first checks
the valid format of the key:

Using msys2

pacman -Syu
pacman -S mingw-w64-x86_64-gcc
pacman -S mingw-w64-x86_64-gtk3

Code: how the program works
Loading the key

int readKey(const char *path) {

 ...

 char c1[9], c2[9], c3[9], c4[9];

 ...

 if (fscanf(fp, "G4C=[%[01] %[01] %[01] %[01]]", c1, c2, c3, c4) != 4)

https://www.msys2.org/
https://www.msys2.org/

Then, it stores the key in our codecKey[4][8] array:

During the encoding process, we don't want to process each byte of the file with the encoding
method.
If we think about it, there are only 256 possible values for a byte (0 to 255), and each input byte
will give two encoded bytes in the output: to speed the process, we will fill a local array unsigned
char encodeMatrix[256][2] with all the possibilities.
Then, in our encoding process, we just access the correct index of the array which is the value of
the byte!

The function int fillMatrixEncode() in codecFunction.c will process the 256 * 2 bytes possibilities
depending on the key:

 ...

 if (strlen(c1) != 8 || strlen(c2) != 8 || strlen(c3) != 8 || strlen(c4) != 8)

 for (i = 0; i < 8; ++i) {
 codecKey[0][i] = c1[i] == '1' ? 1 : 0;
 codecKey[1][i] = c2[i] == '1' ? 1 : 0;
 codecKey[2][i] = c3[i] == '1' ? 1 : 0;
 codecKey[3][i] = c4[i] == '1' ? 1 : 0;
 }

 ...

}

Fill the encoding matrix table

int fillMatrixEncode() {
 char array1[8], array2[8];
 int i, j;

 for (i = 0; i < 256; ++i) {
 for (j = 0; j < 8; ++j) {
 array1[j] = (c2b[i][0] && codecKey[0][j]) ^ (c2b[i][1] && codecKey[1][j]) ^ (c2b[i][2] && codecKey[2][j])
^
 (c2b[i][3] && codecKey[3][j]);
 array2[j] = (c2b[i][4] && codecKey[0][j]) ^ (c2b[i][5] && codecKey[1][j]) ^ (c2b[i][6] && codecKey[2][j])

As we see, we process with a XOR function because a matrix product between bits is the same as
XOR.

As for the encoding process, we don't want to process each byte of the file with the decoding
method during the decoding process.
If we think about it, there are only 256 * 256 possible two-byte combinations: to speed the process,
we fill a local array unsigned char decodeMatrix[256][256] with all the possibilities.
Then, during the decoding process, we just access the correct index of the first dimension of the
array, which is the value of the first byte, then the correct index of the second dimension of the
array, which is the value of the second byte!

The function int fillMatrixDecode() in codecFunction.c will process the 256 * 256 bytes possibilities
depending on the key:

^
 (c2b[i][7] && codecKey[3][j]);
 }
 encodeMatrix[i][0] = b2C(array1);
 encodeMatrix[i][1] = b2C(array2);
 }
 return 0;
}

Fill the decoding matrix table

int fillMatrixDecode() {

 ...

 char i4[5], matrixI4[4], byte[8];

 for (i = 0; i < 8; i++) {
 for (j = 0; j < 4; j++) {
 i4[j] = codecKey[j][i];
 }
 i4[4] = '\0';

 if (i4[0] == 1 && i4[1] == 0 && i4[2] == 0 && i4[3] == 0)
 matrixI4[0] = i;
 else if (i4[0] == 0 && i4[1] == 1 && i4[2] == 0 && i4[3] == 0)
 matrixI4[1] = i;

As explained in the decoding theoretical section, the first step is to find our identity matrix in our
G4C matrix columns. Once we have it, we can continue:

As we see, we fill our two dimensional array with all the possibilities, depending on our identity
matrix.

For this part, we will just focus on the part where we read / write bytes, the rest of the function is
just classic file processing.
The function int encode() in codecFunction.c will open the source file, create the encoded destination
file and fill it with encoded bytes.

The treatment is faster if done in memory, so we will use 4 different buffer sizes, depending on the
file size (10MB, 1MB, 1KB, 1B). Each buffer has the same working process so let's see one of them:

 else if (i4[0] == 0 && i4[1] == 0 && i4[2] == 1 && i4[3] == 0)
 matrixI4[2] = i;
 else if (i4[0] == 0 && i4[1] == 0 && i4[2] == 0 && i4[3] == 1)
 matrixI4[3] = i;
 }

 for (i = 0; i < 256; i++) {
 for (j = 0; j < 256; j++) {
 for (k = 0; k < 4; k++) {
 byte[k] = c2b[i][matrixI4[k]];
 }
 for (k = 0; k < 4; k++) {
 byte[k + 4] = c2b[j][matrixI4[k]];
 }
 decodeMatrix[i][j] = b2C(byte);
 }
 }
 return 0;
}

File encoding process

int encode() {

 ...

 if (size2 >= 10485760) {

When initialized, size2 is the size of the source file and will be decremented every time we process
the file: this allows us to know how many bytes are left to process. The readBuffer array contains
the bytes we read from the source file, and the writeBuffer array will contain the encoded bytes: as
a source byte generates two encoded bytes, it will be twice bigger as the readBuffer size.

To fill writeBuffer , we use two threads: the first one fills the writeBuffer array with the first encoded
byte, and the second one fills it with the second encoded byte. Each of these threads calls a worker
function:

 readBufferSize = 10485760;
 writeBufferSize = readBufferSize * 2;
 readBuffer = malloc(readBufferSize);
 writeBuffer = malloc(writeBufferSize);
 while (size2 >= readBufferSize) {
 size2 -= readBufferSize;

 assert(fread(readBuffer, 1, readBufferSize, fp) == readBufferSize);

 pthread_create(threads, NULL, worker1, NULL);
 pthread_create(threads + 1, NULL, worker2, NULL);

 pthread_join(threads[0], NULL);
 pthread_join(threads[1], NULL);

 assert(fwrite(writeBuffer, 1, writeBufferSize, dest) == writeBufferSize);
 }

 }

void *worker1() {
 for (int i = 0; i < readBufferSize; ++i) {
 writeBuffer[i * 2] = encodeMatrix[readBuffer[i]][0];
 }
 return (NULL);
}

void *worker2() {
 for (int i = 0; i < readBufferSize; ++i) {
 writeBuffer[i * 2 + 1] = encodeMatrix[readBuffer[i]][1];
 }
 return (NULL);

Once all of the bytes are processed, we just free the buffers and close the source and destination
files.

As for the file encoding process, we will just focus on the part where we read / write bytes, the rest
of the function is just classic file processing.
The function int decode() in codecFunction.c will open the encoded source file, create the decoded
destination file and fill it with decoded bytes.

Once again, the treatment is faster when done in memory, so we will use 4 different buffer sizes,
depending on the file size (20MB, 2MB, 2KB, 2B: these values are twice bigger as the encoding
buffer sizes since two encoded bytes are necessary to get a decoded byte).

Each buffer has the same working process so let's see one of them:

When initialized, size2 is the size of the source file and will be decremented every time we process
the file: this allows us to know how many bytes are left to process. The readBuffer array contains
the bytes we read from the source file, and the writeBuffer array will contain the decoded bytes: it
will be half the size of readBuffer .

}

File decoding process

 if (size2 > 20971520) {
 readBufferSize = 20971520;
 writeBufferSize = readBufferSize / 2;
 readBuffer = realloc(readBuffer, readBufferSize);
 writeBuffer = realloc(writeBuffer, writeBufferSize);
 while (size2 >= readBufferSize) {
 size2 -= readBufferSize;

 assert(fread(readBuffer, 1, readBufferSize, fp) == readBufferSize);

 for (i = 0; i < writeBufferSize; i++) {
 writeBuffer[i] = decodeMatrix[readBuffer[i * 2]][readBuffer[i * 2 + 1]];
 }

 assert(fwrite(writeBuffer, 1, writeBufferSize, dest) == writeBufferSize);
 }
 }

To fill writeBuffer , we just read the readBuffer bytes two by two and use them as index of our
decodeMatrix .

Once all of the bytes are processed, we just free the buffers and close the source and destination
files.

If we want to compile on both Linux and Windows, we have an issue with the fseek() and ftell()
functions that are used to determine the size of the source file.

Indeed, on Windows, ftell() only returns and int type value: if the source file size is higher than 2
147 483 647 bytes (~ 2.14 GB), it will return -1 on size_t size , which is unsigned type. This problem is
not present on Linux because ftell() returns a long type value, which is enough.

To fix this problem on Windows, we can use the _fseeki64() and _ftelli64() functions from MinGW
that return a long long type value, but these functions are not available on Linux.

The solution is to use a compilation macro to determine the system that is running the program
and which functions should be used:

If someone has an idea on how to compile in static with GTK or stuffs to be dependence free, be my
guest!

Fixing the cross-compilation issue

#ifdef _WIN64
 assert(!_fseeki64(fp, 0, SEEK_END));
 size_t size = _ftelli64(fp);
 assert(!_fseeki64(fp, 0, SEEK_SET));
#elif __linux__
 assert(!fseek(fp, 0, SEEK_END));
 size_t size = ftell(fp);
 assert(!fseek(fp, 0, SEEK_SET));
#else
 #error You need to compile on Linux or Windows 64bits
#endif

Contributing

Authors

This project was carried out by myself :sunglasses:.

Noé LARRIEU-LACOSTE

Revision #4
Created 9 May 2022 21:46:44 by Noé Larrieu-Lacoste
Updated 10 May 2022 13:50:57 by Noé Larrieu-Lacoste

https://github.com/Nouuu

