
GitHub repo

The input format created by the machine is as follows:

Each entry is exactly 4 rows and 27 columns (9 x 3). The first three lines describe numbers using
pipes and underscores. The fourth line is blank.

Each entry or code created has 9 digits, each ranging from 0 to 9. A typical file can contain up to
100 entries.

Write a program that takes this file as input and manages to parse the codes contained.

Sometimes the machine generates wrong codes. You should now be able to validate the codes
using a checksum. It can be calculated as follows:

code : 3 5 6 6 0 9 7 0 1 position : p9 p8 p7 p6 p5 p4 p3 p2 p1

checksum computing : ((1p1) + (2p2) + (3p3) + ... + (9p9)) mod 11 == 0

Your manager wants the results of your program. It asks you to write an output file, for each of the
input files, on this format :

457508000 664371495 ERR

OCR

Subject

User Story 1

 _ _ _ _ _ _ _

 | _| _||_||_ |_ ||_||_|

 ||_ _| | _||_| ||_| _|

User Story 2

User Story 3

https://github.com/Nouuu/Clean-Code-OCR

The output file has one code per line. If the checksum is bad, it is indicated by ERR in a second
column indicating the status.

Sometimes the machine produces unreadable numbers, such as the following :

Your program should be able to spot such problems. In this case, the unknown numbers are
replaced by '?'. Update your file output. With the previous unreadable number, this would give :

457508000
664371495 ERR
12?13678? ILL

Your manager would like to do some classification. For a set of files given as input, he would now
like to have the possibility of:

Either keep the current behavior and create an output file for each input file
Or use a new behavior that allows it to "group" similar codes

This behavior is as follows: Regardless of the number of input files, the program will create 3
outputs named authorized, errored, and unknown

Authorized contains all valid checksums Errored contains all invalid checksums Unknown contains
all unreadable checksums

Provide a command tool to other developers in your company, so they can easily use all the
features you just created.

Its implementation is free.

User Story 4

 _ _ _ _ _ _ _

 | _| | | _||_ ||_|| |

 ||_ _| | _||_| ||_| _|

User Story 5

User Story 6

Implementation

You can run few commands to start/build this app :

npm run start : Run compiled app in dist folder.
npm run build : Compile the app and generate dist folder
npm run build-dev : Compile the app and generate dist folder then run it (build + start)
npm run dev : Directly run the TS source project
npm run test : Run cucumber tests. This generates two report :

One in coverage folder which show the test coverage
One in cucumber_report.html at the root of the project that show how cucumber
tests results

npm run lint : Run Eslint on source code

When running the program, there is a few (optional) arguments that we can use :

h (optional): boolean => display help
s (optional, default=false): boolean => split classifier into multiple files
m (optional, default=100): number => set the max number of lines to process
l (optional, default=9): number => number of digits per lines
i (optional, default='input.txt'): string => input filename
v (optional): string => valid output filename
e (optional): string => error output filename
u (optional): string => unreadable output filename

The main class is probably the one that can parse each line, regarding the given schema :

This class consists in splitting each character, and it uses another class to get the parsed char :

To be able to match the digit correctly, we are using a string map :

Usage

Run command, arguments

Classes

interface Parser {

 parseText(text: string, maxLines: number, lineSize: number): string[];

 parseLine(line: string, length: number): string;

}

interface CharParser {

 parseChar(input: string): string;

}

To allow the user to choose the way the outputs are classified, we use the following class to return
a said output destination for a given state :

The user can choose between two predefined classifiers, the default one is the unified classifier :

When we run the cucumber tests, it generates two reports

const defaultDigitMap: Map<string, string> = new Map([

 [' _\n| |\n|_|', '0'],

 ['\n |\n |', '1'],

 [' _\n _|\n|_', '2'],

 [' _\n _|\n _|', '3'],

 ['\n|_|\n |', '4'],

 [' _\n|_\n _|', '5'],

 [' _\n|_\n|_|', '6'],

 [' _\n |\n |', '7'],

 [' _\n|_|\n|_|', '8'],

 [' _\n|_|\n _|', '9'],

]);

export interface Classifier {

 getDestination(lineState: LineState): string;

}

export const splitClassifierStateAssociation: Map<LineState, string> = new Map([

 [LineState.VALID, 'authorized.txt'],

 [LineState.ERROR, 'errored.txt'],

 [LineState.UNREADABLE, 'unknown.txt'],

]);

export const unifiedClassifierStateAssociation: Map<LineState, string> =

 new Map([

 [LineState.VALID, 'output.txt'],

 [LineState.ERROR, 'output.txt'],

 [LineState.UNREADABLE, 'output.txt'],

]);

Tests & Coverage

Coverage Report

The first one is a code coverage on cucumber's tests. This file is viewable on
coverage/index.html and look like this :

image-20220301120104082.png

image-20220301120202609.png

The other report is the result of the ran cucumber's tests :

image-20220301120254863.png

image-20220301120448078.png

Cucumber report

Revision #1
Created 9 May 2022 21:26:24 by Noé Larrieu-Lacoste
Updated 9 May 2022 21:30:00 by Noé Larrieu-Lacoste

https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220301120104082.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220301120202609.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220301120254863.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-20220301120448078.png

