Docker images

PPPPPPPPPPPP

PufferPanel

GitHub repo

This docker image provides a PufferPanel container.

It has been tested to run Minecraft server successfully

It run on 64bits Debian base image

Exposed ports :

e 8080 - Webpanel
e 5657 - SFTP server
e 25565 - Default Minecraft server port but it can be changed

Default Admin user

e Username: admin
e Email: admin@pufferpanel.gg
e Password: pufferpanel

Volumes

e /etc/pufferpanel: PufferPanel configs
e /servers_data: Where the servers are stored

https://github.com/Nouuu/Docker-PufferPanel
http://www.pufferpanel.com/

Projeqtor

Docker Projeqgtor

GitHub repo

This docker image provides a Projegtor container with LDAP support.
This image is based on php:7.4-apache

Version of Projeqtor in this image is currently 9.4.2

Exposed ports :

e 80 : Projegtor Webpanel

Volumes

They are two volume mounted on this image :

e /mnt/documents
e /mnt/logs

Both need to have rw access

Environment

Current used environments vars :

PHP ENV

https://github.com/Nouuu/Docker-Projeqtor
https://www.projeqtor.org

Environment variable

PHP_MAX_INPUT VARS

PHP_REQUEST_TERMINATE_TIMEOUT

PHP_MAX_EXECUTION_TIME

PHP_MEMORY_LIMIT

Projeqtor ENV

Name

PJT DB_TYPE

PJT DB_HOST
PJT_DB_PORT

PJT DB_USER

PJT_DB_PASSWORD

PJT_DB_NAME

PJT_DB_PREFIX

PJT_SSL_KEY

PJT SSL_CERT

PJT_SSL_CA
PJT_ATTACHMENT_MAX_SIZE_MAIL

PJT LOG_LEVEL

PJT_ENFORCE_UTF8

Default

4000

30

512M

Default

mysql

127.0.0.1

3306

root

root

projeqtor
empty
empty
empty
empty

2097152

Recommended

Must be > 2000 for real work
allocation screen

Must not end requests on timeout to
let cron run without ending

30 is minimum advised

512M is minimum advised for PDF
generation

Usage

Database type. Can be mysqgl or
pgsql

Database host (server name)
Database port

Database user to connect
Database password for user
Database schema name
Database prefix for table names
SSL Certificate key path

SSL Certificate path

SSL Certificate CA path

Max file size in email

Log level {'4' for script tracing, '3' for
debug, '2' for general trace, '1' for
error trace, '0' for none}

Installed PHP extensions

Extension
qd

imap

For reports graphs

Usage

To retrieve mails to insert replay as notes

Extension Usage

mbstring Mandatory. for UTF-8 compatibility

mysqli For default MySql database

pgsql If database is PostgreSql

pdo BDD connector

pdo_mysql For default MySql database

pdo_pgsql If database is PostgreSq|

openssl To send mails if smtp access is authentified (with user/
password)

Idap Directory Access Protocol, and is a protocol used to access

"Directory Servers"

zip ZipArchive class is mandatory to manage plugins and
export to Excel format

Ready 2 Go Stack

Here is my own compose | used to deploy Projeqtor stack with MySQL database.

First deploy may require admin login (on Projeqtor login page) to init DB.

This stack is for Docker Swarm, if you want to run it on simple docker compose, you must
replace overlay in network definition by bridge

version: '3.8'

services:
mysql_service:

image: mysql:latest

volumes:
- mysql_data:/var/lib/mysq|

networks:
- projeqtor_network

environment:
- MYSQL_ROOT_PASSWORD=changeme
- MYSQL_DATABASE=projeqtor

projeqtor_service:

https://wiki2.nospy.fr/attachments/8

image: nospy/projeqtor:latest

depends_on:
- mysql_service

volumes:
- projeqtor_documents:/mnt/documents
- projeqtor_logs:/mnt/logs

ports:
- "25:25"
- "80:80"

networks:
- projeqtor_network

environment:
- PHP_MAX_EXECUTION_TIME=30
- PHP_MAX_INPUT_VARS=4000
- PHP_MAX_ UPLOAD SIZE=1G
- PHP_MEMORY_LIMIT=512M
- PHP_REQUEST _TERMINATE_TIMEOUT=0
- PJT_ATTACHMENT_MAX_SIZE_MAIL=2097152
- PJT_DB_TYPE=mysq|l
- PJT_DB_HOST=mysql_service
- PJT_DB_PORT=3306
- PJT_DB_NAME=projeqtor
- PJT_DB_USER=root
- PJT_DB_PASSWORD=changeme

volumes:
mysql_data:
projeqtor_documents:

projeqtor_logs:

networks:
projeqtor_network:
driver: overlay

attachable: true

Pnpm

Docker Hub Github

Fast, disk space efficient package manager:

Fast. Up to 2x faster than the alternatives (see benchmark).

Efficient. Files inside node_modules are linked from a single content-addressable storage.

Great for monorepos.

Strict. A package can access only dependencies that are specified in its package.json .
Deterministic. Has a lockfile called pnpm-lock.yaml .

Works as a Node.js version manager. See pnpm env use.

Works everywhere. Supports Windows, Linux, and macOS.

Battle-tested. Used in production by teams of all sizes since 2016.

Background

pnpm uses a content-addressable filesystem to store all files from all module directories on a disk.
When using npm or Yarn, if you have 100 projects using lodash, you will have 100 copies of lodash
on disk. With pnpm, lodash will be stored in a content-addressable storage, so:

1. If you depend on different versions of lodash, only the files that differ are added to the
store. If lodash has 100 files, and a new version has a change only in one of those files,
pnpm update will only add 1 new file to the storage.

2. All the files are saved in a single place on the disk. When packages are installed, their files
are linked from that single place consuming no additional disk space. Linking is performed
using either hard-links or reflinks (copy-on-write).

As a result, you save gigabytes of space on your disk and you have a lot faster installations! If
you'd like more details about the unique node_modules structure that pnpm creates and why it

works fine with the Node.js ecosystem, read this small article: Flat node modules is not the only

way.

Benchmark

https://hub.docker.com/r/nospy/pnpm
https://github.com/Nouuu/pnpm-docker
https://pnpm.io/workspaces
https://pnpm.io/cli/env
https://pnpm.io/users
https://pnpm.io/blog/2020/05/27/flat-node-modules-is-not-the-only-way
https://pnpm.io/blog/2020/05/27/flat-node-modules-is-not-the-only-way

pnpm is up to 2x faster than npm and Yarn classic. See all benchmarks here.

Benchmarks on an app with lots of dependencies:

Dependencies and volume
mapping

Docker volume mapping

https://pnpm.io/npmrc#node-modules-settings

Container location Description
/root/.local/share/pnpm/store The pnpm store module location is on
/root/.local/share/pnpm/store The pnpm global store location pnpmi-g ...

Config

https://pnpm.io/npmrc

The pnpm config command can be used to update and edit the contents of the user and global
.npmrc files.

The four relevant files are:

e per-project configuration file (/path/to/my/project/.npmrc)

e per-workspace configuration file (the directory that contains the pnpm-workspace.yaml
file)

e per-user configuration file (~/.npmrc)

e global configuration file (/etc/npmrc)

Benchmark on real project

https://r.pnpm.io/benchmarks
https://pnpm.io/npmrc#node-modules-settings
https://pnpm.io/npmrc#node-modules-settings

We ran some tests on local computer to check performance of pnpm with shared volume
containers and various projects

With dependencies :

{

"dependencies": {
"@angular-extensions/elements": "~12.6.0",
"@angular-extensions/model": "~10.0.1",
"@angular/animations": "~12.2.6",
"@angular/cdk": "~12.2.6",

"@angular/common": "~12.2.6",
"@angular/compiler": "~12.2.6",
"@angular/core": "~12.2.6",

"@angular/forms": "~12.2.6",
"@angular/material": "~12.2.6",
"@angular/platform-browser": "~12.2.6",
"@angular/platform-browser-dynamic": "~12.2.6",
"@angular/router": "~12.2.6",
"@fortawesome/angular-fontawesome": "~0.7.0",
"@fortawesome/fontawesome-free": "~5.15.1",
"@fortawesome/fontawesome-svg-core": "~1.2.32",
"@fortawesome/free-brands-svg-icons": "~5.15.1",
"@fortawesome/free-solid-svg-icons": "~5.15.1",
"@ngrx/effects": "~12.0.0",

"@ngrx/entity": "~12.0.0",

"@ngrx/router-store": "~12.0.0",

"@ngrx/store": "~12.0.0",
"@ngrx/store-devtools": "~12.0.0",
"@ngx-translate/core": "~13.0.0",
"@ngx-translate/http-loader": "~6.0.0",
"bootstrap": "~5.0.1",

"browser-detect": "~0.2.28",

"rxjs": "~6.6.3",
"tslib": "~2.2.0",
Iluuidll: II/\8'3l1II,

"zone.js": "~0.11.4"
b
"devDependencies": {

"@angular-devkit/build-angular": "~12.2.6",

"@angular-eslint/eslint-plugin”: "~12.0.0",

"@angular/cli": "~12.2.6",
"@angular/compiler-cli": "~12.2.6",
"@angular/language-service": "~12.2.6",

"@commitlint/cli": "~11.0.0",
"@commitlint/config-conventional": "~11.0.0",
"@types/jasmine": "~3.6.0",

"@types/node": "~14.14.7",

"@types/uuid": "~8.3.0",
"@typescript-eslint/eslint-plugin": "~4.7.0",
"@typescript-eslint/eslint-plugin-tslint": "~4.7.0"
"@typescript-eslint/parser": "~4.7.0",
"all-contributors-cli": "~6.19.0",

"assert": "~2.0.0",

"codelyzer": "~6.0.0",

"eslint": "~7.13.0",

"eslint-config-prettier": "~6.15.0",
"eslint-plugin-import": "~2.22.1",

"express": ""~4.16.4",

"husky": "~4.3.0",

"jasmine-core": "~3.6.0",
"jasmine-spec-reporter": "~5.0.0",

"karma": "~6.3.2",

"karma-chrome-launcher": "~3.1.0",
"karma-coverage": "~2.0.3",
"karma-jasmine": "~4.0.0",

"karma-jasmine-html-reporter": "~1.5.0",
"karma-spec-reporter": "~0.0.32",
"npm-run-all": "~4.1.5",
"postcss": "~8.3.6",

"prettier": "~2.1.2",
"pretty-quick": "~3.1.0",
"protractor": "~7.0.0",
"raw-loader": "~4.0.2",

"rimraf": "~3.0.2",
"standard-version": "~9.3.0",
"ts-node": "~9.0.0",

"tslint": "~6.1.3",

"typescript": "~4.2.4",
"webpack": "~5.51.1",

"webpack-bundle-analyzer": "~4.1.0"
}
}

pnpm install

First launch with empty store : 50s

First launch with filled store : 18s

Second launch with pnpme-lockfile.yml and filled store : 10s

Other second launch with pnpm-lockfile.yml and empty store : 40s

