
PufferPanel
Projeqtor
Pnpm

Docker images

GitHub repo

This docker image provides a PufferPanel container.

It has been tested to run Minecraft server successfully

It run on 64bits Debian base image

8080 - Webpanel
5657 - SFTP server
25565 - Default Minecraft server port but it can be changed

Username: admin
Email: admin@pufferpanel.gg
Password: pufferpanel

/etc/pufferpanel: PufferPanel configs
/servers_data: Where the servers are stored

PufferPanel

Exposed ports :

Default Admin user

Volumes

https://github.com/Nouuu/Docker-PufferPanel
http://www.pufferpanel.com/

GitHub repo

This docker image provides a Projeqtor container with LDAP support.

This image is based on php:7.4-apache

Version of Projeqtor in this image is currently 9.4.2

80 : Projeqtor Webpanel

They are two volume mounted on this image :

/mnt/documents
/mnt/logs

Both need to have rw access

Current used environments vars :

Environment variable Default Recommended

PHP_MAX_INPUT_VARS 4000 Must be > 2000 for real work
allocation screen

Projeqtor

Docker Projeqtor

Exposed ports :

Volumes

Environment

PHP ENV

https://github.com/Nouuu/Docker-Projeqtor
https://www.projeqtor.org

Environment variable Default Recommended

PHP_REQUEST_TERMINATE_TIMEOUT 0 Must not end requests on timeout to
let cron run without ending

PHP_MAX_EXECUTION_TIME 30 30 is minimum advised

PHP_MEMORY_LIMIT 512M 512M is minimum advised for PDF
generation

Name Default Usage

PJT_DB_TYPE mysql Database type. Can be mysql or
pgsql

PJT_DB_HOST 127.0.0.1 Database host (server name)

PJT_DB_PORT 3306 Database port

PJT_DB_USER root Database user to connect

PJT_DB_PASSWORD root Database password for user

PJT_DB_NAME projeqtor Database schema name

PJT_DB_PREFIX empty Database prefix for table names

PJT_SSL_KEY empty SSL Certificate key path

PJT_SSL_CERT empty SSL Certificate path

PJT_SSL_CA empty SSL Certificate CA path

PJT_ATTACHMENT_MAX_SIZE_MAIL 2097152 Max file size in email

PJT_LOG_LEVEL 2 Log level {'4' for script tracing, '3' for
debug, '2' for general trace, '1' for
error trace, '0' for none}

PJT_ENFORCE_UTF8 1

Extension Usage

qd For reports graphs

imap To retrieve mails to insert replay as notes

mbstring Mandatory. for UTF-8 compatibility

mysqli For default MySql database

Projeqtor ENV

Installed PHP extensions

Extension Usage

pgsql If database is PostgreSql

pdo BDD connector

pdo_mysql For default MySql database

pdo_pgsql If database is PostgreSql

openssl To send mails if smtp access is authentified (with user /
password)

ldap Directory Access Protocol, and is a protocol used to access
"Directory Servers"

zip ZipArchive class is mandatory to manage plugins and
export to Excel format

Here is my own compose I used to deploy Projeqtor stack with MySQL database.

First deploy may require admin login (on Projeqtor login page) to init DB.

Ready 2 Go Stack

This stack is for Docker Swarm, if you want to run it on simple docker compose, you must
replace overlay in network definition by bridge

version: '3.8'

services:

 mysql_service:

 image: mysql:latest

 volumes:

 - mysql_data:/var/lib/mysql

 networks:

 - projeqtor_network

 environment:

 - MYSQL_ROOT_PASSWORD=changeme

 - MYSQL_DATABASE=projeqtor

 projeqtor_service:

 image: nospy/projeqtor:latest

 depends_on:

 - mysql_service

https://wiki2.nospy.fr/attachments/8

 volumes:

 - projeqtor_documents:/mnt/documents

 - projeqtor_logs:/mnt/logs

 ports:

 - "25:25"

 - "80:80"

 networks:

 - projeqtor_network

 environment:

 - PHP_MAX_EXECUTION_TIME=30

 - PHP_MAX_INPUT_VARS=4000

 - PHP_MAX_UPLOAD_SIZE=1G

 - PHP_MEMORY_LIMIT=512M

 - PHP_REQUEST_TERMINATE_TIMEOUT=0

 - PJT_ATTACHMENT_MAX_SIZE_MAIL=2097152

 - PJT_DB_TYPE=mysql

 - PJT_DB_HOST=mysql_service

 - PJT_DB_PORT=3306

 - PJT_DB_NAME=projeqtor

 - PJT_DB_USER=root

 - PJT_DB_PASSWORD=changeme

volumes:

 mysql_data:

 projeqtor_documents:

 projeqtor_logs:

networks:

 projeqtor_network:

 driver: overlay

 attachable: true

Docker Hub Github

Fast, disk space efficient package manager:

Fast. Up to 2x faster than the alternatives (see benchmark).
Efficient. Files inside node_modules are linked from a single content-addressable storage.
Great for monorepos.
Strict. A package can access only dependencies that are specified in its package.json .
Deterministic. Has a lockfile called pnpm-lock.yaml .
Works as a Node.js version manager. See pnpm env use.
Works everywhere. Supports Windows, Linux, and macOS.
Battle-tested. Used in production by teams of all sizes since 2016.

pnpm uses a content-addressable filesystem to store all files from all module directories on a disk.
When using npm or Yarn, if you have 100 projects using lodash, you will have 100 copies of lodash
on disk. With pnpm, lodash will be stored in a content-addressable storage, so:

1. If you depend on different versions of lodash, only the files that differ are added to the
store. If lodash has 100 files, and a new version has a change only in one of those files,
pnpm update will only add 1 new file to the storage.

2. All the files are saved in a single place on the disk. When packages are installed, their files
are linked from that single place consuming no additional disk space. Linking is performed
using either hard-links or reflinks (copy-on-write).

As a result, you save gigabytes of space on your disk and you have a lot faster installations! If
you'd like more details about the unique node_modules structure that pnpm creates and why it
works fine with the Node.js ecosystem, read this small article: Flat node_modules is not the only
way.

pnpm is up to 2x faster than npm and Yarn classic. See all benchmarks here.

Pnpm

Background

Benchmark

https://hub.docker.com/r/nospy/pnpm
https://github.com/Nouuu/pnpm-docker
https://pnpm.io/workspaces
https://pnpm.io/cli/env
https://pnpm.io/users
https://pnpm.io/blog/2020/05/27/flat-node-modules-is-not-the-only-way
https://pnpm.io/blog/2020/05/27/flat-node-modules-is-not-the-only-way
https://r.pnpm.io/benchmarks

Benchmarks on an app with lots of dependencies:

https://pnpm.io/npmrc#node-modules-settings

Container location Description

/root/.local/share/pnpm/store The pnpm store module location is on

/root/.local/share/pnpm/store The pnpm global store location pnpm i -g ...

https://pnpm.io/npmrc

The pnpm config command can be used to update and edit the contents of the user and global
.npmrc files.

The four relevant files are:

per-project configuration file (/path/to/my/project/.npmrc)
per-workspace configuration file (the directory that contains the pnpm-workspace.yaml
file)
per-user configuration file (~/.npmrc)
global configuration file (/etc/npmrc)

We ran some tests on local computer to check performance of pnpm with shared volume
containers and various projects

With dependencies :

Dependencies and volume mapping

Docker volume mapping

Config

Benchmark on real project

https://pnpm.io/npmrc#node-modules-settings
https://pnpm.io/npmrc#node-modules-settings

{

 "dependencies": {

 "@angular-extensions/elements": "~12.6.0",

 "@angular-extensions/model": "^10.0.1",

 "@angular/animations": "~12.2.6",

 "@angular/cdk": "~12.2.6",

 "@angular/common": "~12.2.6",

 "@angular/compiler": "~12.2.6",

 "@angular/core": "~12.2.6",

 "@angular/forms": "~12.2.6",

 "@angular/material": "~12.2.6",

 "@angular/platform-browser": "~12.2.6",

 "@angular/platform-browser-dynamic": "~12.2.6",

 "@angular/router": "~12.2.6",

 "@fortawesome/angular-fontawesome": "^0.7.0",

 "@fortawesome/fontawesome-free": "^5.15.1",

 "@fortawesome/fontawesome-svg-core": "^1.2.32",

 "@fortawesome/free-brands-svg-icons": "^5.15.1",

 "@fortawesome/free-solid-svg-icons": "^5.15.1",

 "@ngrx/effects": "~12.0.0",

 "@ngrx/entity": "~12.0.0",

 "@ngrx/router-store": "~12.0.0",

 "@ngrx/store": "~12.0.0",

 "@ngrx/store-devtools": "~12.0.0",

 "@ngx-translate/core": "^13.0.0",

 "@ngx-translate/http-loader": "^6.0.0",

 "bootstrap": "^5.0.1",

 "browser-detect": "^0.2.28",

 "rxjs": "~6.6.3",

 "tslib": "^2.2.0",

 "uuid": "^8.3.1",

 "zone.js": "~0.11.4"

 },

 "devDependencies": {

 "@angular-devkit/build-angular": "~12.2.6",

 "@angular-eslint/eslint-plugin": "~12.0.0",

 "@angular/cli": "~12.2.6",

 "@angular/compiler-cli": "~12.2.6",

 "@angular/language-service": "~12.2.6",

 "@commitlint/cli": "^11.0.0",

pnpm install

 "@commitlint/config-conventional": "^11.0.0",

 "@types/jasmine": "~3.6.0",

 "@types/node": "^14.14.7",

 "@types/uuid": "^8.3.0",

 "@typescript-eslint/eslint-plugin": "^4.7.0",

 "@typescript-eslint/eslint-plugin-tslint": "^4.7.0",

 "@typescript-eslint/parser": "^4.7.0",

 "all-contributors-cli": "^6.19.0",

 "assert": "^2.0.0",

 "codelyzer": "^6.0.0",

 "eslint": "^7.13.0",

 "eslint-config-prettier": "^6.15.0",

 "eslint-plugin-import": "^2.22.1",

 "express": "^4.16.4",

 "husky": "^4.3.0",

 "jasmine-core": "~3.6.0",

 "jasmine-spec-reporter": "~5.0.0",

 "karma": "~6.3.2",

 "karma-chrome-launcher": "~3.1.0",

 "karma-coverage": "~2.0.3",

 "karma-jasmine": "~4.0.0",

 "karma-jasmine-html-reporter": "^1.5.0",

 "karma-spec-reporter": "^0.0.32",

 "npm-run-all": "^4.1.5",

 "postcss": "^8.3.6",

 "prettier": "^2.1.2",

 "pretty-quick": "^3.1.0",

 "protractor": "^7.0.0",

 "raw-loader": "^4.0.2",

 "rimraf": "^3.0.2",

 "standard-version": "^9.3.0",

 "ts-node": "~9.0.0",

 "tslint": "~6.1.3",

 "typescript": "~4.2.4",

 "webpack": "^5.51.1",

 "webpack-bundle-analyzer": "^4.1.0"

 }

}

First launch with empty store : 50s
First launch with filled store : 18s
Second launch with pnpm-lockfile.yml and filled store : 10s
Other second launch with pnpm-lockfile.yml and empty store : 40s

