
Docker Hub Github

Fast, disk space efficient package manager:

Fast. Up to 2x faster than the alternatives (see benchmark).
Efficient. Files inside node_modules are linked from a single content-addressable storage.
Great for monorepos.
Strict. A package can access only dependencies that are specified in its package.json .
Deterministic. Has a lockfile called pnpm-lock.yaml .
Works as a Node.js version manager. See pnpm env use.
Works everywhere. Supports Windows, Linux, and macOS.
Battle-tested. Used in production by teams of all sizes since 2016.

pnpm uses a content-addressable filesystem to store all files from all module directories on a disk.
When using npm or Yarn, if you have 100 projects using lodash, you will have 100 copies of lodash
on disk. With pnpm, lodash will be stored in a content-addressable storage, so:

1. If you depend on different versions of lodash, only the files that differ are added to the
store. If lodash has 100 files, and a new version has a change only in one of those files,
pnpm update will only add 1 new file to the storage.

2. All the files are saved in a single place on the disk. When packages are installed, their files
are linked from that single place consuming no additional disk space. Linking is performed
using either hard-links or reflinks (copy-on-write).

As a result, you save gigabytes of space on your disk and you have a lot faster installations! If
you'd like more details about the unique node_modules structure that pnpm creates and why it
works fine with the Node.js ecosystem, read this small article: Flat node_modules is not the only
way.

Pnpm

Background

Benchmark

https://hub.docker.com/r/nospy/pnpm
https://github.com/Nouuu/pnpm-docker
https://pnpm.io/workspaces
https://pnpm.io/cli/env
https://pnpm.io/users
https://pnpm.io/blog/2020/05/27/flat-node-modules-is-not-the-only-way
https://pnpm.io/blog/2020/05/27/flat-node-modules-is-not-the-only-way

pnpm is up to 2x faster than npm and Yarn classic. See all benchmarks here.

Benchmarks on an app with lots of dependencies:

https://pnpm.io/npmrc#node-modules-settings

Container location Description

/root/.local/share/pnpm/store The pnpm store module location is on

/root/.local/share/pnpm/store The pnpm global store location pnpm i -g ...

https://pnpm.io/npmrc

The pnpm config command can be used to update and edit the contents of the user and global
.npmrc files.

The four relevant files are:

per-project configuration file (/path/to/my/project/.npmrc)
per-workspace configuration file (the directory that contains the pnpm-workspace.yaml
file)
per-user configuration file (~/.npmrc)
global configuration file (/etc/npmrc)

Dependencies and volume
mapping
Docker volume mapping

Config

Benchmark on real project

https://r.pnpm.io/benchmarks
https://pnpm.io/npmrc#node-modules-settings
https://pnpm.io/npmrc#node-modules-settings

We ran some tests on local computer to check performance of pnpm with shared volume
containers and various projects

With dependencies :

{
 "dependencies": {
 "@angular-extensions/elements": "~12.6.0",
 "@angular-extensions/model": "^10.0.1",
 "@angular/animations": "~12.2.6",
 "@angular/cdk": "~12.2.6",
 "@angular/common": "~12.2.6",
 "@angular/compiler": "~12.2.6",
 "@angular/core": "~12.2.6",
 "@angular/forms": "~12.2.6",
 "@angular/material": "~12.2.6",
 "@angular/platform-browser": "~12.2.6",
 "@angular/platform-browser-dynamic": "~12.2.6",
 "@angular/router": "~12.2.6",
 "@fortawesome/angular-fontawesome": "^0.7.0",
 "@fortawesome/fontawesome-free": "^5.15.1",
 "@fortawesome/fontawesome-svg-core": "^1.2.32",
 "@fortawesome/free-brands-svg-icons": "^5.15.1",
 "@fortawesome/free-solid-svg-icons": "^5.15.1",
 "@ngrx/effects": "~12.0.0",
 "@ngrx/entity": "~12.0.0",
 "@ngrx/router-store": "~12.0.0",
 "@ngrx/store": "~12.0.0",
 "@ngrx/store-devtools": "~12.0.0",
 "@ngx-translate/core": "^13.0.0",
 "@ngx-translate/http-loader": "^6.0.0",
 "bootstrap": "^5.0.1",
 "browser-detect": "^0.2.28",
 "rxjs": "~6.6.3",
 "tslib": "^2.2.0",
 "uuid": "^8.3.1",
 "zone.js": "~0.11.4"
 },
 "devDependencies": {
 "@angular-devkit/build-angular": "~12.2.6",

 "@angular-eslint/eslint-plugin": "~12.0.0",
 "@angular/cli": "~12.2.6",
 "@angular/compiler-cli": "~12.2.6",
 "@angular/language-service": "~12.2.6",
 "@commitlint/cli": "^11.0.0",
 "@commitlint/config-conventional": "^11.0.0",
 "@types/jasmine": "~3.6.0",
 "@types/node": "^14.14.7",
 "@types/uuid": "^8.3.0",
 "@typescript-eslint/eslint-plugin": "^4.7.0",
 "@typescript-eslint/eslint-plugin-tslint": "^4.7.0",
 "@typescript-eslint/parser": "^4.7.0",
 "all-contributors-cli": "^6.19.0",
 "assert": "^2.0.0",
 "codelyzer": "^6.0.0",
 "eslint": "^7.13.0",
 "eslint-config-prettier": "^6.15.0",
 "eslint-plugin-import": "^2.22.1",
 "express": "^4.16.4",
 "husky": "^4.3.0",
 "jasmine-core": "~3.6.0",
 "jasmine-spec-reporter": "~5.0.0",
 "karma": "~6.3.2",
 "karma-chrome-launcher": "~3.1.0",
 "karma-coverage": "~2.0.3",
 "karma-jasmine": "~4.0.0",
 "karma-jasmine-html-reporter": "^1.5.0",
 "karma-spec-reporter": "^0.0.32",
 "npm-run-all": "^4.1.5",
 "postcss": "^8.3.6",
 "prettier": "^2.1.2",
 "pretty-quick": "^3.1.0",
 "protractor": "^7.0.0",
 "raw-loader": "^4.0.2",
 "rimraf": "^3.0.2",
 "standard-version": "^9.3.0",
 "ts-node": "~9.0.0",
 "tslint": "~6.1.3",
 "typescript": "~4.2.4",
 "webpack": "^5.51.1",

pnpm install

First launch with empty store : 50s
First launch with filled store : 18s
Second launch with pnpm-lockfile.yml and filled store : 10s
Other second launch with pnpm-lockfile.yml and empty store : 40s

 "webpack-bundle-analyzer": "^4.1.0"
 }
}

Revision #2
Created 10 May 2022 13:46:47 by Noé Larrieu-Lacoste
Updated 10 May 2022 13:48:21 by Noé Larrieu-Lacoste

