
Codec

Security Projects

GitHub repo

Contributors Status

This application is G4C Matrix encryption program developed in JavaScript.

Feature Description

Encode file Encode a file with a given G4C Matrix

Decode file Encode a file with a given G4C Matrix

We will use a G4C encoding matrix (matrix of 4 lines, each containing the value of one byte
expressed with 8 bits) which we will load from a text file in this format:

G4C=[10001111 11000111 10100100 10010010]

We will process the file we want to encode byte per byte by making a matrix product with our
encoding matrix:

Our matrix: G4C=[10001111 11000111 10100100 10010010]
Our byte: 1010 0101

First, as we have a 4-line encoding matrix, we separate our byte in two 4-bit parts: 1010 and 0101 .
Then, we make a matrix product: in the program, it is actually a XOR between the byte and the
matrix.

Codec

Description

Features

How it works: the theory

Encoding

https://github.com/Nouuu/CODEC/

Byte / Matrix 1000 1111
1100 0111
1010 0100
1001 0010

1010 :arrow_right: 0010 1011

0101 :arrow_right: 0101 0101

Result: 10100101 is coded as 00101011 01010101
As we see, one input byte generates an output of two encoded bytes: this means that our encoded
output file will be twice bigger than the input source file.

Since coding a byte leads to getting two encoded byte, the consequence is that we will need to
process the file we want to decode 2 byte per 2 byte in order to get one decoded byte.

The first step is to find the identity matrix in our G4C matrix columns:

1234 5678 :arrow_right: 5234

1000 1111
1100 0111
1010 0100
1001 0010

:arrow_right: 1000
0100
0010
0001

Once we've identified the identity columns, we save their positions: here, it's (5-2-3-4).
Back to our previously encoded byte that generated these two bytes: 00101011 01010101 . For each
of these two encoded bytes, we will select the bits located at the 5th, 2nd, 3rd and 4th position,
and then concatenate them to get back to a 8-bits decoded byte.

1234 5678 :arrow_right: 5234

0010 1011 :arrow_right: 1010

0101 0101 :arrow_right: 0101

And voilà!
We've just decoded these two bytes and recovered our original one: 1010 0101

The program GUI is pretty simple to understand:

image_01.png

Decoding

Usage

https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-01.png

First of all, you need to load your G4C matrix text file.
:warning: Your key must be in this format: G4C=[10001111 11000111 10100100 10010010] , otherwise it
won't work.

image_02.png

Then, choose the file you want to encode or decode:

image_03.png

Press the Encode button (no kidding! :upside_down_face:) and wait...

image_05.png

Once your file is encoded, a Download button appears to let you choose the location of your
encoded file: the letter e (for "encoded") is added at the end of the file extension.

image_07.png

Press the Decode button (haha again, no kidding! :upside_down_face:) and wait (again too!)...

image_06.png

Once your file is decoded, a Download button appears to let you choose the location of your
decoded file: the letter d (for "decoded") is added at the end of the file extension.

image_08.png

Load the G4C Matrix

Load the file

Start the encoding process

Start the decoding process

Code: how the program works
Loading the key

https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-02.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-03.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-05.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-07.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-06.png
https://wiki2.nospy.fr/uploads/images/gallery/2022-05/image-08.png

First of all, we need to load our key otherwise the program won't start the encoding / decoding
process.
The key must be in valid format and will be stored in a local array key[4][8] .

The function readKey() in script.js opens the key text file and first checks the valid format of the key:

Then, it stores the key in our key array:

function readKey() {

 ...

 key = "";
 keyReader.readAsText(file);

 keyReader.onload = function () {
 let result = keyReader.result;

 let i = result.search("\\[") + 1;
 result = result.slice(i, i + 8 * 4 + 3).split(' ');

 if (result.length !== 4) {
 alert("Invalid key!");
 log("Invalid key");
 return;
 } else {
 for (i = 0; i < result.length; i++) {
 if (result[i].length !== 8) {
 alert("Invalid key!");
 log("Invalid key");
 return;
 }
 }
 }

 for (i = 0; i < result.length; i++) {
 let string = result[i].split('');
 for (let j = 0; j < string.length; j++) {
 string[j] = parseInt(string[j], 10);
 }
 result[i] = string;

During the encoding process, we don't want to process each byte of the file with the encoding
method.
If we think about it, there are only 256 possible values for a byte (0 to 255), and each input byte
will give two encoded bytes in the output: to speed the process, we will fill a local array
matrixEncode with all the possibilities.
Then, in our encoding process, we just access the correct index of the array which is the value of
the byte!

The function fillMatrixEncode() in script.js will process the 256 * 2 bytes possibilities depending on the
key:

 }

 key = result;

 ...

 fillMatrixEncode();
 fillMatrixDecode();

 log("\nReady to encode / decode");
}

Fill the encoding matrix table

function fillMatrixEncode() {
 matrixEncode = [];
 let matLength = key[0].length;
 let tempBin, tempBin2, i, j, code;
 for (i = 0; i < 256; i++) {
 code = decToByte[i];
 tempBin = [];
 tempBin2 = [];
 for (j = 0; j < matLength; j++) {
 tempBin[j] = (code[0] && key[0][j]) ^ (code[1] && key[1][j]) ^ (code[2] && key[2][j]) ^ (code[3] &&
key[3][j]);
 tempBin2[j] = (code[4] && key[0][j]) ^ (code[5] && key[1][j]) ^ (code[6] && key[2][j]) ^ (code[7] &&
key[3][j]);
 }
 matrixEncode[i] = [byteToDec[tempBin.join('')], byteToDec[tempBin2.join('')]];

As we see, we process with a XOR function because a matrix product between bits is the same as
XOR.

As for the encoding process, we don't want to process each byte of the file with the decoding
during the decoding process. If we think about it, there are only 256 * 256 possible two-byte
combinations: to speed the process, we fill a local array matrixDecode with all the possibilities.
Then, during the decoding process, we just access the correct index of the first dimension of the
array, which is the value of the first byte, then the correct index of the second dimension of the
array, which is the value of the second byte!

The function fillMatrixDecode() in script.js will process the 256 * 256 bytes possibilities depending on
the key:

 }
}

Fill the decoding matrix table

function fillMatrixDecode() {

 ...

 let matrixI4 = [];
 for (i = 0; i < key[0].length; i++) {
 i4 = "";
 for (j = 0; j < key.length; j++) {
 i4 += key[j][i];
 }
 switch (i4) {
 case "1000":
 matrixI4[0] = i;
 break;
 case "0100":
 matrixI4[1] = i;
 break;
 case "0010":
 matrixI4[2] = i;
 break;
 case "0001":
 matrixI4[3] = i;
 break;

As explained in the decoding theoretical section, the first step is to find our identity matrix in our
G4C matrix columns. Once we have it, we can continue:

As we see, we fill our two dimensional array with all the possibilities, depending on our identity
matrix.

For this part, we will just focus on the part where we read / write bytes, the rest of the function is
just classic file processing.
The function encodeOpti() in script.js will create the encoded file in memory and link it to the
download button.

 default:
 break;
 }
 }

 for (i = 0; i < 256; i++) {
 for (j = 0; j < 256; j++) {
 byte = [];
 for (k = 0; k < 4; k++) {
 byte[k] = decToByte[i][matrixI4[k]];
 }
 for (k = 0; k < 4; k++) {
 byte[k + 4] = decToByte[j][matrixI4[k]];
 }
 matrixDecode[i][j] = byteToDec[byte.join('')];
 }
 }
}

File encoding process

function encodeOpti() {

 ...

 fileReader.readAsArrayBuffer(file);
 fileReader.onload = function () {
 let charCode = new Uint8Array(fileReader.result);

As for the file encoding process, we will just focus on the part where we read / write bytes, the rest
of the function is just classic file processing.
The function decodeOpti() in script.js will create the decoded file in memory and link it to the
download button.

 fileSize = charCode.length;
 fileBinTraitmentSize = fileSize * 2;
 fileBufferTraitment = new ArrayBuffer(fileBinTraitmentSize);
 fileBinTraitment = new Uint8Array(fileBufferTraitment);

 let k = 0;

 for (let i = 0; i < fileSize; i++) {
 fileBinTraitment[k] = matrixEncode[charCode[i]][0];
 fileBinTraitment[k + 1] = matrixEncode[charCode[i]][1];
 k += 2;
 }

 ...

 }
}

File decoding process

function decodeOpti() {

 ...

 fileReader.readAsArrayBuffer(file);
 fileReader.onload = function () {
 let charCode = new Uint8Array(fileReader.result);

 fileSize = charCode.length;
 fileBinTraitmentSize = fileSize / 2;
 fileBufferTraitment = new ArrayBuffer(fileBinTraitmentSize);
 fileBinTraitment = new Uint8Array(fileBufferTraitment);

 let k = 0;

This project was carried out in a group of two people, myself included.

Joëlle CASTELLI

Noé LARRIEU-LACOSTE

 for (let i = 0; i < fileSize; i += 2) {
 fileBinTraitment[k] = matrixDecode[charCode[i]][charCode[i + 1]];
 k++;
 }

 ...

}

Authors

https://github.com/JoelleCastelli
https://github.com/Nouuu

