Skip to main content

Codec

GitHub repo

ContributorsStatus

Description

This application is G4C Matrix encryption program developed in JavaScript.

Features

FeatureDescription
Encode fileEncode a file with a given G4C Matrix
Decode fileEncode a file with a given G4C Matrix

How it works: the theory

We will use a G4C encoding matrix (matrix of 4 lines, each containing the value of one byte expressed with 8 bits) which we will load from a text file in this format:

G4C=[10001111 11000111 10100100 10010010]

Encoding

We will process the file we want to encode byte per byte by making a matrix product with our encoding matrix:

  • Our matrix: G4C=[10001111 11000111 10100100 10010010]
  • Our byte: 1010 0101

First, as we have a 4-line encoding matrix, we separate our byte in two 4-bit parts: 1010 and 0101. Then, we make a matrix product: in the program, it is actually a XOR between the byte and the matrix.

Byte / Matrix1000 1111
1100 0111
1010 0100
1001 0010
1010:arrow_right:0010 1011
0101:arrow_right:0101 0101

Result: 10100101 is coded as 00101011 01010101
As we see, one input byte generates an output of two encoded bytes: this means that our encoded output file will be twice bigger than the input source file.

Decoding

Since coding a byte leads to getting two encoded byte, the consequence is that we will need to process the file we want to decode 2 byte per 2 byte in order to get one decoded byte.

The first step is to find the identity matrix in our G4C matrix columns:

1234 5678:arrow_right:5234
1000 1111
1100 0111
1010 0100
1001 0010
:arrow_right:1000
0100
0010
0001

Once we've identified the identity columns, we save their positions: here, it's (5-2-3-4).
Back to our previously encoded byte that generated these two bytes: 00101011 01010101. For each of these two encoded bytes, we will select the bits located at the 5th, 2nd, 3rd and 4th position, and then concatenate them to get back to a 8-bits decoded byte.

1234 5678:arrow_right:5234
0010 1011:arrow_right:1010
0101 0101:arrow_right:0101

And voilà!
We've just decoded these two bytes and recovered our original one: 1010 0101

Usage

The program GUI is pretty simple to understand:

image_01.png

Load the G4C Matrix

First of all, you need to load your G4C matrix text file.
:warning: Your key must be in this format: G4C=[10001111 11000111 10100100 10010010], otherwise it won't work.

image_02.png

Load the file

Then, choose the file you want to encode or decode:

image_03.png

Start the encoding process

Press the Encode button (no kidding! :upside_down_face:) and wait...

image_05.png

Once your file is encoded, a Download button appears to let you choose the location of your encoded file: the letter e (for "encoded") is added at the end of the file extension.

image_07.png

Start the decoding process

Press the Decode button (haha again, no kidding! :upside_down_face:) and wait (again too!)...

image_06.png

Once your file is decoded, a Download button appears to let you choose the location of your decoded file: the letter d (for "decoded") is added at the end of the file extension.

image_08.png

Code: how the program works

Loading the key

First of all, we need to load our key otherwise the program won't start the encoding / decoding process.
The key must be in valid format and will be stored in a local array key[4][8].

The function readKey() in script.js opens the key text file and first checks the valid format of the key:

function readKey() {
    
    ...
    
    key = "";
    keyReader.readAsText(file);

    keyReader.onload = function () {
        let result = keyReader.result;

        let i = result.search("\\[") + 1;
        result = result.slice(i, i + 8 * 4 + 3).split(' ');

        if (result.length !== 4) {
            alert("Invalid key!");
            log("Invalid key");
            return;
        } else {
            for (i = 0; i < result.length; i++) {
                if (result[i].length !== 8) {
                    alert("Invalid key!");
                    log("Invalid key");
                    return;
                }
            }
        }

Then, it stores the key in our key array:

        for (i = 0; i < result.length; i++) {
            let string = result[i].split('');
            for (let j = 0; j < string.length; j++) {
                string[j] = parseInt(string[j], 10);
            }
            result[i] = string;
        }

        key = result;

        ...
        
        fillMatrixEncode();
        fillMatrixDecode();

        log("\nReady to encode / decode");
}

Fill the encoding matrix table

During the encoding process, we don't want to process each byte of the file with the encoding method.
If we think about it, there are only 256 possible values for a byte (0 to 255), and each input byte will give two encoded bytes in the output: to speed the process, we will fill a local array matrixEncode with all the possibilities.
Then, in our encoding process, we just access the correct index of the array which is the value of the byte!

The function fillMatrixEncode() in script.js will process the 256 * 2 bytes possibilities depending on the key:

function fillMatrixEncode() {
    matrixEncode = [];
    let matLength = key[0].length;
    let tempBin, tempBin2, i, j, code;
    for (i = 0; i < 256; i++) {
        code = decToByte[i];
        tempBin = [];
        tempBin2 = [];
        for (j = 0; j < matLength; j++) {
            tempBin[j] = (code[0] && key[0][j]) ^ (code[1] && key[1][j]) ^ (code[2] && key[2][j]) ^ (code[3] && key[3][j]);
            tempBin2[j] = (code[4] && key[0][j]) ^ (code[5] && key[1][j]) ^ (code[6] && key[2][j]) ^ (code[7] && key[3][j]);
        }
        matrixEncode[i] = [byteToDec[tempBin.join('')], byteToDec[tempBin2.join('')]];
    }
}

As we see, we process with a XOR function because a matrix product between bits is the same as XOR.

Fill the decoding matrix table

As for the encoding process, we don't want to process each byte of the file with the decoding during the decoding process. If we think about it, there are only 256 * 256 possible two-byte combinations: to speed the process, we fill a local array matrixDecode with all the possibilities.
Then, during the decoding process, we just access the correct index of the first dimension of the array, which is the value of the first byte, then the correct index of the second dimension of the array, which is the value of the second byte!

The function fillMatrixDecode() in script.js will process the 256 * 256 bytes possibilities depending on the key:

function fillMatrixDecode() {

    ...
    
    let matrixI4 = [];
    for (i = 0; i < key[0].length; i++) {
        i4 = "";
        for (j = 0; j < key.length; j++) {
            i4 += key[j][i];
        }
        switch (i4) {
            case "1000":
                matrixI4[0] = i;
                break;
            case "0100":
                matrixI4[1] = i;
                break;
            case "0010":
                matrixI4[2] = i;
                break;
            case "0001":
                matrixI4[3] = i;
                break;
            default:
                break;
        }
    }

As explained in the decoding theoretical section, the first step is to find our identity matrix in our G4C matrix columns. Once we have it, we can continue:

    for (i = 0; i < 256; i++) {
        for (j = 0; j < 256; j++) {
            byte = [];
            for (k = 0; k < 4; k++) {
                byte[k] = decToByte[i][matrixI4[k]];
            }
            for (k = 0; k < 4; k++) {
                byte[k + 4] = decToByte[j][matrixI4[k]];
            }
            matrixDecode[i][j] = byteToDec[byte.join('')];
        }
    }
}

As we see, we fill our two dimensional array with all the possibilities, depending on our identity matrix.

File encoding process

For this part, we will just focus on the part where we read / write bytes, the rest of the function is just classic file processing.
The function encodeOpti() in script.js will create the encoded file in memory and link it to the download button.

function encodeOpti() {
   
    ...

    fileReader.readAsArrayBuffer(file);
    fileReader.onload = function () {
        let charCode = new Uint8Array(fileReader.result);

        fileSize = charCode.length;
        fileBinTraitmentSize = fileSize * 2;
        fileBufferTraitment = new ArrayBuffer(fileBinTraitmentSize);
        fileBinTraitment = new Uint8Array(fileBufferTraitment);

        let k = 0;

        for (let i = 0; i < fileSize; i++) {
            fileBinTraitment[k] = matrixEncode[charCode[i]][0];
            fileBinTraitment[k + 1] = matrixEncode[charCode[i]][1];
            k += 2;
        }

        ...
        
    }
}

File decoding process

As for the file encoding process, we will just focus on the part where we read / write bytes, the rest of the function is just classic file processing.
The function decodeOpti() in script.js will create the decoded file in memory and link it to the download button.

function decodeOpti() {
    
    ...

    fileReader.readAsArrayBuffer(file);
    fileReader.onload = function () {
        let charCode = new Uint8Array(fileReader.result);

        fileSize = charCode.length;
        fileBinTraitmentSize = fileSize / 2;
        fileBufferTraitment = new ArrayBuffer(fileBinTraitmentSize);
        fileBinTraitment = new Uint8Array(fileBufferTraitment);

        let k = 0;
        for (let i = 0; i < fileSize; i += 2) {
            fileBinTraitment[k] = matrixDecode[charCode[i]][charCode[i + 1]];
            k++;
        }

    ...
    
}

Authors

This project was carried out in a group of two people, myself included.

Joëlle CASTELLI
Noé LARRIEU-LACOSTE